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Abstract. In this communication we present the synchronization of
complex networks adding a derivative coupling term in the network equa-
tion. This is, using a simple derivative action the synchronous behavior
of a complex network is achieved. We consider strictly different chaotic
systems in nodes. We show that the derivative term leads to the syn-
chronous behavior in networks that has three different dynamical models
in nodes, whereas when there is no derivative term the network is leaded
to an equilibrium point. Numerical simulation are provided to illustrate
the result.

Keywords: Complex Networks, Synchronization, Chaos

1 Introduction

Network are everywhere in nature, a network can be seen as a set of objects
connected or linked with some strength coupling. The study of this class of dy-
namical system has attracted a lot of attention see for instance[1],{2],{3]. Complex
networks involves a common phenomenon between dynamical systems, synchro-
nization [4], moreover synchronization of chaotic systems is still an open topic
(refer to [5],[6],[7]). Therefore synchronization of complex networks is a challeng-
“ing recent problem under study. Examples of networks are so diverse, individuals
in a community, where every person is represented as a node; the internet, which
is a set of routers connected by physical or virtual connections; the Web, where
virtual web documents can be accessed via other web links [8], or others web doc-
uments can be accessed via this web. Biological networks, where an important
issue is to understand the interaction between cells [9]; in protein interactions,
it has been shown that this interaction is highly heterogeneous [10]; epidemic
spreading studies [11]; until collaboration networks [12}; thus understanding the
synchronization of complex networks is an essential issue in science and technol-

ogy. .

The problem of network synchronization has been studied departing from the
determination of the appropriate coupling strength (see for instance [2],[13]), and
assuming that every system in each node is equal to any other system in the net-
work. However, these assumptions are not realistic, since the nodes in a network
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cominunity, internet, webs etc. are in general different. In this sense we deal with
the particular problem of synchronize a network which nodes are represented by
nonidentical chaotic systems. Moreover, we seek for synchronization of the net-
work in a chaotic attractor, neither into a limit cycle nor an equilibrium point.
Maoyin and Donghua [14] reported the synchronization of a complex network
assuming unknown the dynamics in each node and the strength coupling func-
tions, authors used the LaSalle invariance principle and a simple linear controller.
However, they assume that there is an isolated dynamics to which the nodes in
the network are synchronized. This is a strong assumption, since the behavior
of the network depends on the collective dynamics and not on an isolated node.
Other approach to control and synchronization of complex network is provided
in [15] where they considered a synchronization scheme assuming that a few
nodes are controlled via a proportional term. Nevertheless, the synchronization
objective was to stabilize the global behavior in an equilibrium point and not
in a chaotic attractor. Gua-Ping and coworkers {16} reported an approach to
synchronize a dynamical complex network using state observers, but the syn-
chronization is achieved via solving a LMI, solution of this kind of inequalities
requires a great computational capacities for networks with many nodes, which
represents a consumption of resources.

We present an approach that consider a derivative coupling term in the net-
work equation to improve the synchronous behavior. To this end, we propose
to synchronize scale-free networks and small-world networks with nonidentical
nodes. The derivative term lead the global behavior of the network to a chaotic
attractor. Compared with the standard coupling, the derivative coupling under
certain network topology reaches the chaotic synchronous behavior, whereas the
standard coupling lead the network to the equilibrium ir a limit cycle.

The paper is organized as follows. In Section II the model for the complex
networks dynamics is described, in Section III we propose the derivative term
to improve the synchronization behavior, results on synchronization of scale-free
and small-world networks are illustrated in Section IV and finally, the work is
closed with some concluding remarks in section V.

2 Model of dynamical complex networks

Consider a dynamical complex network with N identical nodes and diffusive
couplings, which every node is an identical n-dimensional dynamical system and
with state equation given by

. N
T; — f(’L'l) ‘E‘Czj:lai,jr(l’j — Ii) 1
e (1)
Vi = &
where z; = (Z41. %2, - ,a:m)T € R™ is the state vector for the i — tA node,

f:R* xR — R” is a smooth nonlinear vector field, ¢ > 0 stands for the cou-
pling strength, the constant matrix I" = diag(v1.y2, .. ., ) is a diagonal matrix
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with v, = 1 for the k — th stéte, this means that two nodes are coupled via the
k — th state variable. In other words, matrix I" determines by which variables
the oscillators are coupled.

Now, the coupling coefficients a; ; are the incomes of a real matrix A, if it is
a connection between node ¢ and node j (j # 1), therefore a;; = aj; = 1; other-
wise, a; ; = a;,; = 0(j # ©). Then the coupling matrix is diagonal and irreducible
if we consider that there are no isolated nodes, thus, we know that zero is an
eigenvalue of A with multiplicity 1, and the others eigenvalues of A are strictly
positive. Network synchronization is defined as follows

Definition 1. A complex network is Completely Synchronized if every node
synchronizes each other, lims—.oo || z; —2; |2 O forall 1 <4,5 < N.

2.1 The proposed derivative coupling

We consider that the vector fields f(z;) in every node of the network are in
general nonidentical. This is a realistic consideration since in real networks dy-
namical system in a node is in general different. Therefore, the main contribution
is the modification of the equation (1) by adding a derivative coupling term, with
this new term the synchronization behavior of the network is investigated. With
these modifications we can rewrite (1) as follows

[S™)
~=

N N
z; = fzi) + szai’jr(l‘j —z;) + CDZOQ',J‘F(:EJ‘ — ;) (
J=1 7=1

where we have added the derivative part, cp and cp are the Proportional
and Derivative coupling strength respectively. The derivative term is such that
the network dynamics is increased in the sense that the interconnection between
nodes are provided by the time variation of the linking state. Therefore, the
linking of the nodes in the network are composed by the states and the time
derivative of the states. With this modification we look for the synchronization
of complex networks in a chaotic attractor which is defined by the collective
behavior of the network.

3 Results on synchronization

We seek for complete synchronization of a network in a synchronization manifold
¥(z), in other words, synchronization of the network in a chaotic attractor.
Where the synchronization manifold is given by ¥(z) = 1 = 2 = --- = Zn
and correspond to the synchronized behavior. It is clear that z; for some ¢ could
be seen as a solution of an isolated system which in this case is uncertain. The
synchronization manifold ¥(x) is a result of the collective behavior and it is not
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known a prior.

Fig. 1. Small-World complex network, where R, L, Ch stand for the Réssler, Lorenz
and Chen systems respectively.

3.1 Synchronization of Small-World Networks ‘

Small world networks are characterized by possessing a relatively small average
path length. The average path length, is defined as the mean distance between
two nodes, averaged over all pair of nodes. To illustrate the result, let us consider
a network with three autonomous chaotic systems given by the Rdéssler, Chen
and Lorenz systems

3'71 = —Ty — I3
To = T1+ Gxo (3)
$g = (x7 —d)zg + b

S{fl == O'(IEQ — I}_)
Iy = pxr1+ Brs — T3 (4)
93.3 = Xi1Ty — T3

21',"1 B 8(.’]32 -".Il)
To =TT — T123 + o (5)
T3 = I1Ty — gT3

‘Where the parameters for the system in node 7 — th, are different, which rep-
resents nonidentical dynamical systerns. Thus, the network considered for this
case is illustrated in Figure 1, where 5 Rossler systems, 5 Chen systems and 5
Lorenz systems were connected and with I" = diag(1,1,1).
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Fig. 2. Stabilization of the Small-World complex network at an equilibrium.
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Fig. 3. Attractor for the stabilization of the network.
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Fig. 4. Synchronization of the network.

The behavior of the network with no derivative coupling is illustrated in Fig-
ure 2, where the connection was activated at f = 10sec. It can be observe that the
dynamics of the network is leaded to an equilibrium point. This means that with
this network topology the synchronization is achieved but in an equilibrium, this
is, the the collective behavior is such that inhibits the chaotic behavior in each
node. It is important to note that there is no value for the coupling parameter
cp such that the network synchronizes in a chaotic attractor, for this case we
use ¢cp = 15.

In Figure 3 the attractor of one node in the network and its corresponding canon-
ical projections are illustrated. The trajectories of each system in the network
are driven to an equilibrium point. A conjecture for this behavior can be the
fact that the system in the network are strictly different, this means that, since
each system in the network possess a strictly different vector fields and the cor-
responding trajectories are also different.

Therefore, in order to obtain chaotic synchronization in the network, we use
the modified equation (2}). Thus, considering the same network topology but with
cp = 15 and ¢p = 1 the synchronization in the chaotic attractor is obtained. The
time evolution is illustrated in Figure 4. Where we have connected the network



Sinchronization of Complex Networks with Nonidentical Nodes 163

at ¢t = 10sec. using the derivative coupling. At ¢ = 40sec. the derivative coupling
is disconnected and the behavior is leaded again to the equilibrium point.

In Figure 5 the chaotic attractor of a single node is presented as well as
its corresponding canomical projections. This attractor was obtained using the
derivative coupling, and again after a period of time the derivative coupling is
disconnected and the trajectory is leaded to an equilibrium point. Note that, in
Figure 4, the corresponding error . = z; — z; for j = 1,2,..., N, this is, the
error of the output of node é-th, and the node j-th, for all j.

Fig. 5. Synchronization of the network in a chaotic attractor.

4 Conclusions

In this communication we illustrated the synchronization of a complex small-
world network. The main contribution is that using a derivative coupling, a
network with non identical systems in nodes can reach the synchronous behavior.
We show that the network is leaded to an equilibrium point if the coupling factor
is increased, but using the derivative coupling the synchronization in a chaotic
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attractor is obtained. The next step is apply this derivative coupling to scale-free
networks which is still under study.
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